Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Radiological Medicine and Protection ; (12): 595-600, 2023.
Article in Chinese | WPRIM | ID: wpr-993130

ABSTRACT

Objective:To explore the feasibility of a classification prediction model for gamma pass rates (GPRs) under different intensity-modulated radiation therapy techniques for pelvic tumors using a radiomics-based machine learning approach, and compare the classification performance of four integrated tree models.Methods:With a retrospective collection of 409 plans using different IMRT techniques, the three-dimensional dose validation results were adopted based on modality measurements, with a GPR criterion of 3%/2 mm and 10% dose threshold. Then prediction were built models by extracting radiomics features based on dose documentation. Four machine learning algorithms were used, namely random forest (RF), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM). Their classification performance was evaluated by calculating sensitivity, specificity, F1 score, and AUC value. Results:The RF, AdaBoost, XGBoost, and LightGBM models had sensitivities of 0.96, 0.82, 0.93, and 0.89, specificities of 0.38, 0.54, 0.62, and 0.62, F1 scores of 0.86, 0.81, 0.88, and 0.86, and AUC values of 0.81, 0.77, 0.85, and 0.83, respectively. XGBoost model showed the highest sensitivity, specificity, F1 score, and AUC value, outperforming the other three models. Conclusions:To build a GPR classification prediction model using a radiomics-based machine learning approach is feasible for plans using different intensity-modulated radiotherapy techniques for pelvic tumors, providing a basis for future multi-institutional collaborative research on GPR prediction.

2.
Chinese Journal of Radiological Medicine and Protection ; (12): 101-105, 2023.
Article in Chinese | WPRIM | ID: wpr-993058

ABSTRACT

Objective:Based on radiomics characteristics, different machine learning classification models are constructed to predict the gamma pass rate of dose verification in intensity-modulated radiotherapy for pelvic tumors, and to explore the best prediction model.Methods:The results of three-dimensional dose verification based on phantom measurement were retrospectively analyzed in 196 patients with pelvic tumor intensity-modulated radiotherapy plans. The gamma pass rate standard was 3%/2 mm and 10% dose threshold. Prediction models were constructed by extracting radiomic features based on dose documentation. Four machine learning algorithms, random forest, support vector machine, adaptive boosting, and gradient boosting decision tree were used to calculate the AUC value, sensitivity, and specificity respectively. The classification performance of the four prediction models was evaluated.Results:The sensitivity and specificity of the random forest, support vector machine, adaptive boosting, and gradient boosting decision tree models were 0.93, 0.85, 0.93, 0.96, 0.38, 0.69, 0.46, and 0.46, respectively. The AUC values were 0.81 and 0.82 for the random forest and adaptive boosting models, respectively, and 0.87 for the support vector machine and gradient boosting decision tree models.Conclusions:Machine learning method based on radiomics can be used to construct a prediction model of gamma pass rate for specific dosimetric verification of pelvic intensity-modulated radiotherapy. The classification performance of the support vector machine model and gradient boosting decision tree model is better than that of the random forest model and adaptive boosting model.

SELECTION OF CITATIONS
SEARCH DETAIL